Abstract
A strongly dependent Gaussian sequence has a spectral density $f(x, \theta)$ satisfying $f(x, \theta) \sim |x|^{-\alpha(\theta)} L_\theta(x)$ as $x \rightarrow 0$, where $0 < \alpha(\theta) < 1$ and $L_\theta(x)$ varies slowly at 0. Here $\theta$ is a vector of unknown parameters. An estimator for $\theta$ is proposed and shown to be consistent and asymptotically normal under appropriate conditions. These conditions are satisfied by fractional Gaussian noise and fractional ARMA, two examples of strongly dependent sequences.

This publication has 0 references indexed in Scilit: