Basic Fibroblast Growth Factor Prevents Thalamic Degeneration after Cortical Infarction

Abstract
In the focal infarction model of the rat middle cerebral artery (MCA), the thalamus of the occluded side becomes gradually atrophic, mainly because of retrograde degeneration. We determined whether basic fibroblast growth factor (bFGF) administered intracisternally could prevent this thalamic atrophy. We occluded the left MCA through a small cranial opening, and animals were then divided into two groups. One group received intra-cisternal injections of recombinant bFGF (1 μg dissolved in 0.1 ml of saline with 2% rat serum) starting 1 day after occlusion and repeated once a week to a total dose of 4 μg by four injections. The other group received vehicle solution by the same schedule. The animals were perfused and fixed at 28 days after occlusion, and histological examination was made at the level of the caudoputamen and thalamus. In the bFGF-treated rats, the area of the posterior ventral thalamus of the occluded side was 93% of that of the contralateral side, i.e., significantly larger than in the normal saline-treated rats (75%, p < 0.01). The infarction size was not statistically different in the two groups. Microscopic observation indicated that normal-saline-treated animals showed shrinkage and disappearance of thalamic neurons, whereas bFGF-treated groups showed preservation of thalamic neurons. Computerized analysis of the cell size substantiated this observation. To assess the effect of bFGF on astrocytes, bFGF or vehicle solution was injected into normal rats, and their histology was evaluated at 1, 2, and 4 weeks after injection. The bFGF-injected group showed a significant increase in glial fibrillary acidic protein-positive astrocytes in the brain tissue facing the ventriculocisternal system. The results suggest that bFGF prevents retrograde degeneration of thalamic neurons by working directly as a neurotrophic factor of these neurons or by activating astrocytes located in the thalamocortical pathway.