Artifact-resistant power-efficient design of finger-ring plethysmographic sensors
- 1 July 2001
- journal article
- Published by Institute of Electrical and Electronics Engineers (IEEE) in IEEE Transactions on Biomedical Engineering
- Vol. 48 (7) , 795-805
- https://doi.org/10.1109/10.930904
Abstract
A miniaturized, telemetric, photoplethysmograph (PPG) sensor for long-term, continuous monitoring is presented. The sensor, called a "ring sensor," is attached to a finger base for monitoring beat-to-beat pulsation, and the data is sent to a host computer via a radio-frequency transmitter. Two major design issues are addressed: one is to minimize motion artifact and the other is to minimize the consumption of battery power. An efficient double ring design is developed to lower the influence of external force, acceleration, and ambient light, and to hold the sensor gently and securely on the skin, so that the circulation at the finger may not be obstructed. Total power consumption is analyzed in relation to characteristics of individual components, sampling rate, and CPU clock speed. Optimal operating conditions are obtained for minimizing the power budget. A prototype ring sensor is designed and built based on the power budget analysis and the artifact-resistive attachment method. It is verified through experiments that the ring sensor is resistant to interfering forces and acceleration acting on the ring body. Benchmarking tests with FDA-approved PPG and electrocardiogram reveal that the ring sensor is comparable to those devices in detecting beat-to-beat pulsation despite disturbances.Keywords
This publication has 4 references indexed in Scilit:
- Ischemic and pressure-induced hyperemia: A comparisonArchives of Physical Medicine and Rehabilitation, 1998
- Measurement of pulse-wave velocity using a beat-sampling techniqueAnnals of Biomedical Engineering, 1988
- Continuous electrocardiographic monitoring during automobile driving: Studies in normal subjects and patients with coronary diseaseThe American Journal of Cardiology, 1968
- New Method for Heart StudiesScience, 1961