Heat-transfer analysis of microfabricated thermocapillary pumping and reaction devices

Abstract
A heat-transfer analysis was performed on thermocapillary pumping, a surface-tension-based drop pumping mechanism. The analysis, which incorporates both fluid flow and energy transport through multiple device layers, reveals effective material, design, and operational choices that result in improved pumping performance. Important design factors include thermal conductivity, channel/substrate thickness, and the velocity of the liquid drops. Results for pumping a drop of water on a fused silica substrate with a glass channel show that uniform interface temperatures can be achieved with bottom heating as long as drop velocities remain below ~0.1 cm s-1 . The analysis was also extended to include thermal reaction channels. The reactor analysis verified that relatively uniform reaction temperatures were attainable with bottom heating as long as channel heights were below ~100 µm.

This publication has 17 references indexed in Scilit: