Probabilistic modeling of local appearance and spatial relationships for object recognition
- 27 November 2002
- conference paper
- Published by Institute of Electrical and Electronics Engineers (IEEE)
Abstract
In this paper, we describe an algorithm for object recognition that explicitly models and estimates the posterior probability function, P(object\image). We have chosen a functional form of the posterior probability function that captures the joint statistics of local appearance and position on the object as well as the statistics of local appearance in the visual world at large. We lise a discrete representation of local appearance consisting of approximately 106 patterns. We compute an estimate of P(object\image) in closed form by counting the frequency of occurrence of these patterns over various sets of training images. We have used this method for detecting human faces from frontal and profile views. The algorithm for frontal views has shown a detection rate of 93.0% with 88 false alarms on a set of 125 images containing 483 faces combining the MIT test set of Sung and Poggio with the CMU test sets of Rowley, Baluja, and Kanade. The algorithm for detection of profile views has also demonstrated promising results.Keywords
This publication has 11 references indexed in Scilit:
- The FERET evaluation methodology for face-recognition algorithmsPublished by Institute of Electrical and Electronics Engineers (IEEE) ,2002
- Pedestrian detection using wavelet templatesPublished by Institute of Electrical and Electronics Engineers (IEEE) ,2002
- Neural network-based face detectionPublished by Institute of Electrical and Electronics Engineers (IEEE) ,1998
- Example-based learning for view-based human face detectionPublished by Institute of Electrical and Electronics Engineers (IEEE) ,1998
- Probabilistic visual learning for object representationPublished by Institute of Electrical and Electronics Engineers (IEEE) ,1997
- Recognition of planar object classesPublished by Institute of Electrical and Electronics Engineers (IEEE) ,1996
- Eigenfeatures for planar pose measurement of partially occluded objectsPublished by Institute of Electrical and Electronics Engineers (IEEE) ,1996
- Classifier and shift-invariant automatic target recognition neural networksNeural Networks, 1995
- Visual learning and recognition of 3-d objects from appearanceInternational Journal of Computer Vision, 1995
- Color indexingInternational Journal of Computer Vision, 1991