Optimal residual design for fault diagnosis using multi-objective optimization and genetic algorithms

Abstract
This paper develops a new approach to the design of optimal residuals in order to diagnose incipient faults based on multi-objective optimization and genetic algorithms. In this approach the residual is generated via an observer. To reduce false and missed alarm rates in fault diagnosis, a number of performance indices are introduced into the observer design. Some performance indices are expressed in the frequency domain to take account of the frequency distributions of faults, noise and modelling uncertainties. All objectives then are reformulated into a set of inequality constraints on performance indices. A genetic algorithm is thus used to search for an optimal solution to satisfy these inequality constraints on performance indices. The approach developed is applied to a flight control system example, and simulation results show that incipient sensor faults can be detected reliably in the presence of modelling uncertainty.