Conformational Transition Occurring upon Amyloid Aggregation of the HET-s Prion Protein of Podospora anserina Analyzed by Hydrogen/Deuterium Exchange and Mass Spectrometry

Abstract
The [Het-s] infectious element of the filamentous fungus Podospora anserina corresponds to the prion form of the HET-s protein. HET-s (289 amino acids in length) aggregates into amyloid fibers in vitro. Such fibers obtained in vitro are infectious, indicating that the [Het-s] prion can propagate as a self-perpetuating amyloid aggregate of the HET-s protein. Previous analyses have suggested that only a limited region of the HET-s protein is involved in amyloid formation and prion propagation. To document the conformational transition occurring upon amyloid aggregation of HET-s, we have developed a method involving hydrogen/deuterium exchange monitored by MALDI-MS. In a first step, a peptide mass fingerprint of the protein was obtained, leading to 87% coverage of the HET-s primary structure. Amyloid aggregates of HET-s were obtained, and H/D exchange was monitored on the soluble and on the amyloid form of HET-s. This study revealed that in the soluble form of HET-s, the C-terminal region (spanning from residues 240−289) displays a high solvent accessibility. In sharp contrast, solvent accessibility is drastically reduced in that region in the amyloid form. H/D exchange rates and levels in the N-terminal part of the protein (residues 1−220) are comparable in the soluble and the aggregated state. These results indicate that amyloid aggregation of HET-s involves a conformational transition of the C-terminal part of the protein from a mainly disordered to an aggregated state in which this region is highly protected from hydrogen exchange.