Mechanisms of benzene-induced hematotoxicity and leukemogenicity: cDNA microarray analyses using mouse bone marrow tissue.

Abstract
Although the mechanisms underlying benzene-induced toxicity and leukemogenicity are not yet fully understood, they are likely to be complicated by various pathways, including those of metabolism, growth factor regulation, oxidative stress, DNA damage, cell cycle regulation, and programmed cell death. With this as a background, we performed cDNA microarray analyses on mouse bone marrow tissue during and after a 2-week benzene exposure by inhalation. Our goal was to clarify the mechanisms underlying the hematotoxicity and leukemogenicity induced by benzene at the level of altered multigene expression. Because a few researchers have postulated that the cell cycle regulation mediated by p53 is a critical event for benzene-induced hematotoxicity, the present study was carried out using p53-knockout (KO) mice and C57BL/6 mice. On the basis of the results of large-scale gene expression studies, we conclude the following: (a) Benzene induces DNA damage in cells at any phase of the cell cycle through myeloperoxida...

This publication has 63 references indexed in Scilit: