Exophilin4/Slp2-a Targets Glucagon Granules to the Plasma Membrane through Unique Ca2+-inhibitory Phospholipid-binding Activity of the C2A Domain

Abstract
Rab27a and Rab27b have recently been recognized to play versatile roles in regulating the exocytosis of secretory granules and lysosome-related organelles by using multiple effector proteins. However, the precise roles of these effector proteins in particular cell types largely remain uncharacterized, except for those in pancreatic β cells and in melanocytes. Here, we showed that one of the Rab27a/b effectors, exophilin4/Slp2-a, is specifically expressed in pancreatic α cells, in contrast to another effector, granuphilin, in β cells. Like granuphilin toward insulin granules, exophilin4 promotes the targeting of glucagon granules to the plasma membrane. Although the interaction of granuphilin with syntaxin-1a is critical for the targeting activity, exophilin4 does this primarily through the affinity of its C2A domain toward the plasma membrane phospholipids phosphatidylserine and phosphatidylinositol-4,5-bisphosphate. Notably, the binding activity to phosphatidylserine is inhibited by a physiological range of the Ca2+concentration attained after secretagogue stimulation, which presents a striking contrast to the Ca2+-stimulatory activity of the C2A domain of synaptotagmin I. Analyses of the mutant suggested that this novel Ca2+-inhibitory phospholipid-binding activity not only mediates docking but also modulates the subsequent fusion of the secretory granules.