FATIGUE CRACK GROWTH IN A SINTERED TUNGSTEN ALLOY

Abstract
Abstract—Room temperature fatigue crack propagation in a sintered tungsten alloy was studied. The fatigue crack growth rates were found to be identical for the material in the sintered and forged and as sintered conditions. The propagation rates are slower when compared with other metals due to the relatively high Young's modulus of tungsten. The value of the exponentmin Paris' power law equation was found to be 12 which is higher than for most metals. This was ascribed to the activity of a cleavage mechanism through some of the tungsten grains along with the ductile decohesion fatigue mechanism.

This publication has 8 references indexed in Scilit: