Abstract
The synaptic excitation of central vestibular neurons in the isolated superfused brainstem of chronic hemilabyrinthectomized (HL) frogs and of controls was studied electrophysiologically and pharmacologically. Central vestibular neurons were excited either through vestibular afferent fibers or through the vestibular commissural pathway by means of electrical stimulation of the ipsilateral or the contralateral VIIIth nerve. In chronic HL frogs, commissural field potential amplitudes were on the average larger than those of intact frogs and the shape parameters of intracellularly recorded commissural EPSPs of chronic animals were on the average shifted towards those of vestibular afferent EPSPs. In control frogs, vestibular afferent EPSPs were generated independently from N-methyl-D-aspartate (NMDA) receptors, whereas commissural EPSPs exhibited a delayed NMDA receptor mediated component. Commissural EPSPs of HL frogs exhibited a NMDA receptor mediated component as well. The size of this EPSP component was larger when the time to peak of the EPSP was longer. EPSPs with similar rise times exhibited NMDA mediated components of similar size, irrespective of whether they originated from chronic animals or controls. The tendency of these EPSPs towards shorter rise times in chronic animals was paralled by a similar decrease of the relative size of their NMDA receptor mediated component. It is concluded that the increased synaptic efficacy of commissural fibers observed in chronic HL frogs does not result from an increased NMDA receptor component.