Abstract
4‐31G wave functions have been computed for five purines and pyrimidines. The calculated deformation densities have been partitioned into atomic fragments, which were integrated to yield atomic multipole moments. The transferability of atomic fragments between related molecules was verified by constructing model maps for uracil and guanine from appropriate fragments of cytosine and adenine. Model electrostatic potentials calculated from the moments of model atoms are similar to the corresponding 4‐31G potentials. Comparison of 4‐31G and 4‐31G** deformation densities of cytosine provides simple rules for estimating the effects of polarization functions on the atomic multipole moments of most atom types occurring in the purines and pyrimidines. These rules were applied to the other molecules and yielded reasonable approximations for their molecular dipole moments. Substituting CH3 for H has little effect on the deformation density beyond the substitution center.

This publication has 44 references indexed in Scilit: