Pervasive haplotypic variation in the spliceo-transcriptome of the human major histocompatibility complex
- 31 May 2011
- journal article
- Published by Cold Spring Harbor Laboratory in Genome Research
- Vol. 21 (7) , 1042-1054
- https://doi.org/10.1101/gr.116681.110
Abstract
The human major histocompatibility complex (MHC) on chromosome 6p21 is a paradigm for genomics, showing remarkable polymorphism and striking association with immune and non-immune diseases. The complex genomic landscape of the MHC, notably strong linkage disequilibrium, has made resolving causal variants very challenging. A promising approach is to investigate gene expression levels considered as tractable intermediate phenotypes in mapping complex diseases. However, how transcription varies across the MHC, notably relative to specific haplotypes, remains unknown. Here, using an original hybrid tiling and splice junction microarray that includes alternate allele probes, we draw the first high-resolution strand-specific transcription map for three common MHC haplotypes (HLA-A1-B8-Cw7-DR3, HLA-A3-B7-Cw7-DR15, and HLA-A26-B18-Cw5-DR3-DQ2) strongly associated with autoimmune diseases including type 1 diabetes, systemic lupus erythematosus, and multiple sclerosis. We find that haplotype-specific differences in gene expression are common across the MHC, affecting 96 genes (46.4%), most significantly the zing finger protein gene ZFP57. Differentially expressed probes are correlated with polymorphisms between haplotypes, consistent with cis effects that we directly demonstrate for ZFP57 in a cohort of healthy volunteers (P = 1.2 × 10−14). We establish that alternative splicing is significantly more frequent in the MHC than genome-wide (72.5% vs. 62.1% of genes, P ≤ 1 × 10−4) and shows marked haplotypic differences. We also unmask novel and abundant intergenic transcription involving 31% of transcribed blocks identified. Our study reveals that the renowned MHC polymorphism also manifests as transcript diversity, and our novel haplotype-based approach marks a new step toward identification of regulatory variants involved in the control of MHC-associated phenotypes and diseases.Keywords
This publication has 61 references indexed in Scilit:
- Transcriptome genetics using second generation sequencing in a Caucasian populationNature, 2010
- Understanding mechanisms underlying human gene expression variation with RNA sequencingNature, 2010
- A Maternal-Zygotic Effect Gene, Zfp57, Maintains Both Maternal and Paternal ImprintsDevelopmental Cell, 2008
- The haplo-spliceo-transcriptome: common variations in alternative splicing in the human populationTrends in Genetics, 2008
- Variation analysis and gene annotation of eight MHC haplotypes: The MHC Haplotype ProjectImmunogenetics, 2008
- Population genomics of human gene expressionNature Genetics, 2007
- A genome-wide association study of global gene expressionNature Genetics, 2007
- Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot projectNature, 2007
- Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genomeNature Genetics, 2007
- A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHCNature Genetics, 2006