Thin films of YBa2Cu3O7-x were grown on MgO(100) by metalorganic chemical vapor deposition (MOCVD). Low pressure growth studies were carried out between 400 and 600°C using metal β-diketonate complexes as source reagents for Y, Ba, and Cu. As-deposited films were amorphous and a two stage annealing protocol was used in which fluorine was first removed in a Ar/H20 stream between 700 and 850°C, followed by calcination in flowing oxygen between 500 and 950°C. Scanning electron microscopy, X-ray diffraction and energy dispersive analysis indicate that good compositional and dimensional uniformity could be achieved. The temperature of the oxygen annealing step was shown to have a dramatic impact on the physical and electrical properties of the YBa2Cu307-x thin films. Annealing temperatures exceeding 910°C gave large crystallites and semiconducting resistivity above Tc; annealing temperatures below 910°C yielded films with metallic conductivity whose density and superconducting transition varied inversely with maximum annealing temperature. Optimized deposition/annealing protocols yielded films with a preferred c-axis orientation, R273/R100 ratios of 2, onsets as high as 94K and zero resistance exceeding 90K.