Glycosylation of Recombinant Prorenin in Insect Cells: The Insect Cell Line Sf9 Does Not Express the Mannose 6-Phosphate Recognition Signal
- 1 July 1994
- journal article
- Published by American Chemical Society (ACS) in Biochemistry
- Vol. 33 (29) , 8793-8797
- https://doi.org/10.1021/bi00195a022
Abstract
Sf9 cells infected with a recombinant baculovirus containing the gene for human prorenin were cultured in the presence of [3H]mannose. In vivo labeled prorenin was isolated by immunoprecipitation from the culture medium and digested with Pronase. The oligosaccharide structures on the resulting glycopeptides were analyzed by a combination of lectin, ion-exchange, paper, and high-pressure liquid chromatography. Of the N-linked oligosaccharides isolated from the Sf9-produced prorenin, 98% were of a truncated (trimannosyl) high-mannose type, approximately two-thirds of which contained a fucose residue linked to the reducing N-acetylglucosamine. The remaining 2% constituted a mixture of high-mannose-type structures containing six, seven, or eight mannose residues; none of these structures were core-fucosylated. None of the oligosaccharide structures recovered from recombinant prorenin synthesized by Sf9 cells were phosphorylated or contained any other form of charge. Furthermore, assays for UDP-GlcNAc-lysosomal-enzyme N-acetylglucosamine phosphotransferase demonstrated no activity above background in lysates prepared from Sf9 cells. Blotting of Sf9 cell lysates with an 125I-labeled, soluble form of the cation-independent mannose 6-phosphate receptor failed to detect any proteins carrying the mannose 6-phosphate recognition signal. Taken together, the data suggest that Sf9 cells do not synthesize high-mannose-type oligosaccharides containing mannose 6-phosphate, and consequently it appears unlikely that these cells utilize the mannose 6-phosphate receptor mediated pathway for targeting of lysosomal enzymes.Keywords
This publication has 0 references indexed in Scilit: