Respiratory Sinus Arrhythmia

Abstract
Background The primary mechanisms of respiratory sinus arrhythmia (RSA) are understood to be the modulation of cardiac vagal efferent activity by the central respiratory drive and the lung inflation reflex, and the degree of RSA increases with cardiac vagal activity. However, it is unclear whether RSA serves an active physiological role or merely reflects a passive cardiovascular response to respiratory input. We hypothesized that RSA benefits pulmonary gas exchange by matching perfusion to ventilation within each respiratory cycle. Methods and Results In seven anesthetized dogs, a model simulating RSA was made. After elimination of endogenous autonomic activities, respiration-linked heartbeat fluctuations were generated by electrical stimulation of the right cervical vagus during negative pressure ventilation produced by phrenic nerve stimulation (diaphragm pacing). The vagal stimulation was performed in three conditions: phasic stimulation during expiration (artificial RSA) and during inspiration (inver...

This publication has 24 references indexed in Scilit: