Dual-Function Probe for PET and Near-Infrared Fluorescence Imaging of Tumor Vasculature

Top Cited Papers
Open Access
Abstract
To date, the in vivo imaging of quantum dots (QDs) has been mostly qualitative or semiquantitative. The development of a dual-function PET/near-infrared fluorescence (NIRF) probe can allow for accurate assessment of the pharmacokinetics and tumor-targeting efficacy of QDs. Methods: A QD with an amine-functionalized surface was modified with RGD peptides and 1,4,7,10-tetraazacyclodocecane-N,N′,N″,N‴-tetraacetic acid (DOTA) chelators for integrin αvβ3–targeted PET/NIRF imaging. A cell-binding assay and fluorescence cell staining were performed with U87MG human glioblastoma cells (integrin αvβ3–positive). PET/NIRF imaging, tissue homogenate fluorescence measurement, and immunofluorescence staining were performed with U87MG tumor–bearing mice to quantify the probe uptake in the tumor and major organs. Results: There are about 90 RGD peptides per QD particle, and DOTA–QD–RGD exhibited integrin αvβ3–specific binding in cell cultures. The U87MG tumor uptake of 64Cu-labeled DOTA–QD was less than 1 percentage injected dose per gram (%ID/g), significantly lower than that of 64Cu-labeled DOTA–QD–RGD (2.2 ± 0.3 [mean ± SD] and 4.0 ± 1.0 %ID/g at 5 and 18 h after injection, respectively; n = 3). Taking into account all measurements, the liver-, spleen-, and kidney-to-muscle ratios for 64Cu-labeled DOTA–QD–RGD were about 100:1, 40:1, and 1:1, respectively. On the basis of the PET results, the U87MG tumor-to-muscle ratios for DOTA–QD–RGD and DOTA–QD were about 4:1 and 1:1, respectively. Excellent linear correlation was obtained between the results measured by in vivo PET imaging and those measured by ex vivo NIRF imaging and tissue homogenate fluorescence (r2 = 0.93). Histologic examination revealed that DOTA–QD–RGD targets primarily the tumor vasculature through an RGD–integrin αvβ3 interaction, with little extravasation. Conclusion: We quantitatively evaluated the tumor-targeting efficacy of a dual-function QD-based probe with PET and NIRF imaging. This dual-function probe has significantly reduced potential toxicity and overcomes the tissue penetration limitation of optical imaging, allowing for quantitative targeted imaging in deep tissue.

This publication has 0 references indexed in Scilit: