Primary Structure of Sweet Potato Starch Phosphorylase Deduced from its cDNA Sequence

Abstract
Sweet potato (Ipomoea batatas) starch phosphorylase cDNA clones were isolated by screening an expression library prepared from the young root poly(A)(+) RNA successively with an antiserum, a monoclonal antibody, and a specific oligonucleotide probe. One cDNA clone had 3292 nucleotide residues in which was contained an open reading frame coding for 955 amino acids. This sequence was compared with those of potato (916 residues plus 50-residue putative transit peptide) and rabbit muscle (841 residues) phosphorylases. The sweet potato phosphorylase has an overall structural feature highly homologous to that reported for potato phosphorylase, in conformity with the finding that they belong to the same class of plant phosphorylase. High divergencies of the two enzymes are found in the about 70 residue N-termini each including a putative transit peptide, and the midchain 78 residue insert typical of type I plant phosphorylase. We consider that the very high dissimilarity found in the midchain inserts is related to the difference in proteolytic lability of the two plant phosphorylases. Some structural features of the cDNA clone were also discussed.