Abstract
The efficacies and mechanisms of obidoxime in antagonizing the neuromuscular failure induced by neostigmine and diisopropyl fluorophosphate (DFP) were studied in mouse phrenic nerve/diaphragm preparations. Obidoxime antagonized neostigmine-induced tetanic fade (EC50: 300 µM) by inhibiting the regenerative and sustained depolarization during repetitive stimulation. The antagonism was associated with a depression and shortening of single endplate potentials (EPPs) and miniature EPPs (MEPPs). In contrast, the neuromuscular failure induced irreversibly after treatment with DFP and followed by washout was restored by obidoxime at concentrations (EC50: 0.6 µM) 500-fold lower than that against neostigmine. The regenerative depolarization was abolished with no depression of single EPPs and MEPPs, and the antagonistic action persisted after washout of obidoxime. The EC50 of obidoxime was proportionately increased in the presence of increasing concentrations of DFP. Nevertheless, the EC50 against DFP, at a concentration (30 µM) 15-fold in excess of that which caused tetanic fade, was still 10-fold lower than that which antagonized neostigmine. In both cases, the amplitudes of train EPPs were increased. It is concluded that obidoxime antagonizes neostigmine-induced neuromuscular failure by a curare-like action but antagonizes DFP by an enzyme reactivation.

This publication has 27 references indexed in Scilit: