Frizzled‐7 and limb mesenchymal chondrogenesis: Effect of misexpression and involvement of N‐cadherin

Abstract
Products of the Frizzled family of tissue polarity genes have been identified as putative receptors for the Wnt family of signaling molecules. Wnt-signaling is implicated in the regulation of limb mesenchymal chondrogenesis, and our recent study indicates that N-cadherin and related activities are functionally involved in Wnt-7a-mediated inhibition of chondrogenesis. By using an in vitro high-density micromass culture system of chick limb mesenchymal cells, we have analyzed the spatiotemporal expression patterns and the effects on chondrogenesis of RCAS retroviral-mediated misexpression of Chfz-1 and Chfz-7, two Frizzled genes implicated in chondrogenic regulation. Chfz-1 expression was localized at areas surrounding the cartilaginous nodules at all time points examined, whereas Chfz-7 expression was limited to cellular aggregates during initial mesenchymal condensation, and subsequently was down-regulated from the centers toward the periphery of cartilage nodules at the time of chondrogenic differentiation, resembling the pattern of N-cadherin expression. Chondrogenesis in vitro was inhibited and limited to a smaller area of the culture upon misexpression of Chfz-7, but not affected by Chfz-1 misexpression. Analyses of cellular condensation and chondrogenic differentiation showed that the inhibitory action of Chfz-7 is unlikely to be at the chondrogenic differentiation step, but instead affects the earlier precartilage aggregate formation event. At 24 hr, expression of N-cadherin, a key component of the cellular condensation phase of chondrogenesis, was delayed/suppressed in Chfz-7 misexpressing cultures, and was limited to a significantly smaller cellular condensation area within the entire culture at 48 hr, when compared with control cultures. Chfz-1 misexpressing cultures appeared similar to control cultures at all time points. However, neither Chfz-1 nor Chfz-7 misexpression affected mesenchymal cell proliferation in vitro. These results suggest that Chfz-7 is active in regulating N-cadherin expression during the process of limb mesenchymal chondrogenesis and that Chfz-1 and Chfz-7 are involved in different Wnt-signaling pathways.