The Threshold for Potassium-Induced Contractures of Frog Skeletal Muscle. Potentiation of Potassium-Induced Contractures by Preexposure to Subthreshold Potassium Concentrations
- 1 January 1972
- journal article
- Published by Canadian Science Publishing in Canadian Journal of Physiology and Pharmacology
- Vol. 50 (1) , 37-44
- https://doi.org/10.1139/y72-007
Abstract
A brief exposure (about 10–30 s) of a frog's toe muscle or a small bundle of fibers from the semi-tendinosus muscle to just subthreshold potassium concentrations potentiated contractures subsequently produced by exposing the muscles to a potassium concentration slightly above the threshold. The contractures thus potentiated had greater maximum tensions, and greater rates of tension development and relaxation than control contractures elicited by the same final potassium concentration. The resistance to stretch (R.T.S.) in the first few seconds of the potentiated contractures was about twice that of control contractures. Maximum potentiation occurred with preexposures of about 30 s; longer preexposures led to a decrease of potentiation and eventually to a depression of the contracture. The potentiation was not immediately abolished when the muscle was reexposed to Ringer solution but persisted for 2 min or longer (the 'washout effect'). It was concluded that exposing a muscle to low subcontracture threshold concentrations of potassium for a few seconds primes the intracellular contractile apparatus, probably by causing an increased sarcoplasmic concentration of Ca2+ ions, resulting in a potentiation of subsequently induced submaximal potassium contractures. The increase in metabolism (or 'Solandt effect') seen under these conditions is temporally related to the decline and eventual loss of the potentiation and is probably a reflection of active processes involved in reducing the sarcoplasmic concentration of Ca2+ ions.Keywords
This publication has 0 references indexed in Scilit: