Effect of growth temperature on photoluminescence of GaNAs/GaAs quantum well structures

Abstract
The effect of growth temperature on the optical properties of GaAs/GaNxAs1−x quantum wells is studied in detail using photoluminescence (PL) spectroscopies. An increase in growth temperature up to 580 °C is shown to improve the optical quality of the structures, while still allowing one to achieve high (>3%) N incorporation. This conclusion is based on: (i) an observed increase in intensity of the GaNAs-related near-band-edge emission; (ii) a reduction in band-edge potential fluctuations, deduced from the analysis of the PL line shape; and (iii) a decrease in concentration of some extended defects detected under resonant excitation of the GaNAs. The thermal quenching of the GaNAs-related PL emission, however, is almost independent of the growth temperature and is attributed to a thermal activation of an efficient nonradiative recombination channel located in the GaNAs layers.