Abstract
The localized model of the beam-shape coefficients for Gaussian beam-scattering theory by a spherical particle provides a great simplification in the numerical implementation of the theory. We derive an alternative form for the localized coefficients that is more convenient for computer computations and that provides physical insight into the details of the scattering process. We construct a fortran program for Gaussian beam scattering with the localized model and compare its computer run time on a personal computer with that of a traditional Mie scattering program and with three other published methods for computing Gaussian beam scattering. We show that the analytical form of the beam-shape coefficients makes evident the fact that the excitation rate of morphology-dependent resonances is greatly enhanced for far off-axis incidence of the Gaussian beam.