Stromal Cell-dependent Growth of Leukemic Cells from Murine Erythroblastic Leukemia

Abstract
Transplantable erythroblastic leukemia was induced by 300-rad irradiation of C3H mice. Conditions for in vitro growth of the leukemic cells were studied. None of interleukin-3, granulocyte/macrophage colony-stimulating factor and erythropoietin could support the growth of the cells in vitro. In contrast, the leukemic cells grew into a stroma-dependent cell line, ELM-D, in close contact with the stromal cell layer of 900-rad-irradiated long-term bone marrow culture. A stroma-independent cell line, termed ELM-I-1, was further established from the non-adherent population in the co-culture of the leukemic cells, ELM-D, with stromal cells. Reverse transcriptase activity was not detectable in ELM-D or ELM-I-1 cells. Studies on binding and cross-linking of 125I-erythropoietin showed that ELM-I-1 cells had erythropoietin receptors, and two major radiolabeled protein products with molecular weights of 120 kDa and 140 kDa were detected on sodium dodecyl sulfate/polyacrylamide gel electrophoresis under reducing conditions.