Abstract
The grasshopper’s cereal nerve is established early in embryogenesis by an identified pair of peripheral neurons called the cereal pioneers. Like the peripheral pioneer neurons in other insect appendages, these two cells send their axons from the periphery to the rudimentary CNS and thus lay the foundation for a nerve that will later be followed by a large number of sensory axons. In this paper, cobalt fills of the primordial cereal nerve were used to characterize the disposition of these peripheral pioneer axons within the embryonic CNS. The pioneer axons stained by this technique terminate in ellipsoidal growth cones which have filopodia radiating from the leading edge and a single long terminal filament pointing along the path the axon is taking. The growing axons also bear filopodia along their sides, but these structures disappear as the cells mature. The pioneer axons of the cereal nerve make an abrupt turn where they first enter the ganglion rudiment and join the axons of the primary longitudinal tract. The pioneers then grow along this tract for several hundred microns without forming secondary growth cones or branches. This prolonged absence of central arborization distinguishes the peripheral pioneer axons from the axons of later-arising epidermal sensory neurons.