Metabolic clearance of insulin-like growth factor-II in sheep

Abstract
The metabolic clearance of ovine insulin-like growth factor-II (IGF-II) was examined in sheep using 131I-labelled IGF-II. Following i.v. administration the tracer was distributed in a volume similar to that of the vascular space (58-5 ±3.3 ml/kg; mean ± s.e.m., n = 5) and demonstrated a triphasic pattern of clearance. Size-exclusion chromatography of a plasma sample collected 1 min after injection revealed peaks of radioactivity corresponding to hormone complexed to binding proteins of 150 and 40–50 kDa (relative abundance 21 and 65% respectively), a high molecular weight binding protein (>200 kDa; 5%) and 'free' tracer (9%). Chromatography of sequential plasma samples revealed different patterns of clearance for these constituents. Half-lives of 131I-labelled IGF-II complexed to the 150 and 40–50 kDa binding proteins, as calculated from rate constants for their decay, were 351 ± 30 and 9.6 ± min respectively (n = 5). These differ markedly from estimates for the clearance of IGF-I (545 ± 25 min, n = 8, and 34 ± 2.3 min, n = 6) associated with carrier proteins of the same apparent molecular weights. This was reflected in calculated metabolic clearance rates for IGF-I (3.9 ± 0.5 ml/min) and IGF-II (7.8 ±1.0 ml/min). Chromatography also revealed that free IGF-II was reduced to negligible levels by 12 min. In contrast, radioactivity eluting in the position expected for the > 200 kDa binding protein was cleared from the circulation very slowly. However, the small proportion of total radioactivity eluting in these molecular weight regions precluded calculation of decay constants for these species. Tracer degradation was monitored throughout the clearance study and estimated to be 90% fall in plasma radioactivity. Tracer in urine was completely degraded. Journal of Endocrinology (1989) 123, 461–468