Physiological properties of the dorsal longitudinal flight muscle and the tergal depressor of the trochanter muscle ofDrosophila melanogaster
- 1 June 1990
- journal article
- research article
- Published by Springer Nature in Journal of Muscle Research and Cell Motility
- Vol. 11 (3) , 203-215
- https://doi.org/10.1007/bf01843574
Abstract
A prerequisite for using muscle mutants to study contraction inDrosophila melanogaster is a description of the mechanics of wild-type muscles. Here we describe the mechanics of two different wild-type muscles; the dorsal longitudinal flight muscle which is asynchronous (nerve impulses are not synchronised with each contraction), and a leg muscle, the tergal depressor of the trochanter, which is synchronous. We have compared their mechanics to those of the asynchronous flight and the synchronous leg muscle from the giant waterbugLethocerus indicus. We found that the mechanics of the asynchronous flight muscles from the two species were similar. At rest length both muscles had a high relaxed stiffness, were partially activated by Ca2+ (low steady-state active tension) and, once activated, had a large delayed increase in tension, which was well maintained, in response to a rapid stretch. The rate constant for the delayed increase in tension was about 10 times greater forD. melanogaster than forL. indicus under the same conditions. The mechanics of the synchronous leg muscles from both species were different from those of the flight muscles and resembled those of other synchronous muscles such as vertebrate striated muscle. At rest length, both muscles had a lower relaxed stiffness than the flight muscles, were fully activated by Ca2+ (high steady-state active tension) and, once activated, had a small delayed increase in tension, which was less well maintained, in response to a rapid stretch. The rate constant for the delayed increase in tension was similar for the leg muscles of both species. The different mechanical properties of the flight and leg muscles must arise from differences in their contractile proteins. The demonstration that satisfactory mechanical responses can be obtained from the small (less than 1 mm long) muscles ofD. melanogaster will enable future responses from mutant muscles to be tested.Keywords
This publication has 39 references indexed in Scilit:
- Tissue-specific expression of the 79B actin gene during Drosophila developmentDevelopmental Biology, 1989
- Troponin of asynchronous flight muscleJournal of Molecular Biology, 1988
- Filament geometry and the activation of inisect flight musclesNature, 1979
- The Croonian Lecture, 1977 - Stretch activation of muscle: function and mechanismProceedings of the Royal Society of London. B. Biological Sciences, 1978
- Studies on the chymotryptic digestion of myosin. Effects of divalent cations on proteolytic susceptibilityJournal of Molecular Biology, 1977
- Stereotaxic map of the muscle fibers in the indirect flight muscles ofDrosophila melanogasterJournal of Morphology, 1973
- Phosphate Starvation and the Nonlinear Dynamics of Insect Fibrillar Flight MuscleThe Journal of general physiology, 1972
- The mass of myosin per cross-bridge in insect fibrillar flight muscleJournal of Molecular Biology, 1966
- ELECTRON MICROSCOPIC STUDIES ON THE INDIRECT FLIGHT MUSCLES OF DROSOPHILA MELANOGASTER The Journal of cell biology, 1963
- ELECTRON MICROSCOPIC STUDIES ON THE INDIRECT FLIGHT MUSCLES OFDROSOPHILAMELANOGASTER The Journal of cell biology, 1963