The three–dimensional leading–edge vortex of a ‘hovering’ model hawkmoth
- 29 March 1997
- journal article
- Published by The Royal Society in Philosophical Transactions Of The Royal Society B-Biological Sciences
- Vol. 352 (1351) , 329-340
- https://doi.org/10.1098/rstb.1997.0024
Abstract
Recent flow visualisation experiments with the hawkmoth, Manduca sexta, revealed small but clear leading–edge vortex and a pronounced three–dimensional flow. Details of this flow pattern were studied with a scaled–up, robotic insect (‘the flapper’) that accurately mimicked the wing movements of a hovering hawkmoth. Smoke released from the leading edge of the flapper wing confirmed the existence of a small, strong and stable leading–edge vortex, increasing in size from wingbase to wingtip. Between 25 and 75 % of the wing length, its diameter increased approximately from 10 to 50 % of the wing chord. The leading–edge vortex had a strong axial flow veolocity, which stabilized it and reduced its diamater. The vortex separated from the wing at approximately 75 % of the wing length and thus fed vorticity into a large, tangled tip vortex. If the circulation of the leading–edge vortex were fully used for lift generation, it could support up to two–thirds of the hawkmoth's weight during the downstroke. The growth of this circulation with time and spanwise position clearly identify dynamic stall as the unsteady aerodynamic mechanism responsible for high lift production by hovering hawkmoths and possibly also by many other insect species.Keywords
This publication has 10 references indexed in Scilit:
- The three–dimensional leading–edge vortex of a ‘hovering’ model hawkmothPhilosophical Transactions Of The Royal Society B-Biological Sciences, 1997
- Flow visualization and unsteady aerodynamics in the flight of the hawkmoth,Manduca sextaPhilosophical Transactions Of The Royal Society B-Biological Sciences, 1997
- Review of the physics of enhancing vortex lift by unsteady excitationProgress in Aerospace Sciences, 1991
- The generation of circulation and lift in a rigid two-dimensional flingJournal of Fluid Mechanics, 1986
- The aerodynamics of hovering insect flight. IV. Aerodynamic mechanismsPhilosophical Transactions of the Royal Society of London. B, Biological Sciences, 1984
- On the Theory of the Horizontal-Axis Wind TurbineAnnual Review of Fluid Mechanics, 1983
- Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part 1. Dynamics of the ‘fling’Journal of Fluid Mechanics, 1979
- Lift Enhancement by an Externally Trapped VortexJournal of Aircraft, 1978
- Dynamic Stall Experiments on Oscillating AirfoilsAIAA Journal, 1976
- Predictions of vortex-lift characteristics by a leading-edge suctionanalogyJournal of Aircraft, 1971