Effects of Spaceflight in the Adductor Longus Muscle of Rats Flown in the Soviet Biosatellite COSMOS 2044. A Study Employing Neural Cell Adhesion Molecule (N-CAM) Immunocytochemistry and Conventional Morphological Techniques (Light and Electron Microscopy)
- 1 July 1992
- journal article
- research article
- Published by Oxford University Press (OUP) in Journal of Neuropathology and Experimental Neurology
- Vol. 51 (4) , 415-431
- https://doi.org/10.1097/00005072-199207000-00004
Abstract
The effects of spaceflight upon the “slow” muscle adductor longus were examined in rats flown in the Soviet Biosatellite COSMOS 2044. The techniques employed included standard methods for light microscopy, neural cell adhesion molecule (N-CAM) immunocytochemistry and electron microscopy. Light microscopic observations revealed myofiber atrophy and segmental necrosis accompanied by cellular infiltrates composed of macrophages, leukocytes and mononuclear cells. Neural cell adhesion molecule immunoreactivity (N-CAM-IR) was seen on the myofiber surface and in regenerating myofibers. Ultrastructural alterations included Z band streaming, disorganization of myofibrillar architecture, sarcoplasmic degradation, extensive segmental necrosis with apparent preservation of the basement membrane, degenerative phenomena of the capillary endothelium and cellular invasion of necrotic areas. Regenerating myofibers were identified by the presence of increased amounts of ribosomal aggregates and chains of polyribosomes associated with myofilaments. The principal electron microscopic changes of the neuromuscular junctions showed axon terminals with a decrease or absence of synaptic vesicles replaced by microtubules and neurofilaments, degeneration of axon terminals, vacant axonal spaces and changes suggestive of axonal sprouting. The present observations suggest that alterations such as myofibrillar disruption and necrosis, muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight.Keywords
This publication has 0 references indexed in Scilit: