Desired seismic characteristics of an air gun source

Abstract
Marine seismic data are generally contaminated with both “bubble pulses” and “tow noise.” Air gun sources are deployed in arrays designed to reduce the effective level of the bubble pulses. Because the signal from a source array is profoundly altered by the filter characteristics of the earth and because the received signal is subjected to noise‐generating computer processes such as deconvolution, array designs should be optimized to obtain the minimum aggregate noise, and hence the greatest reflection stand‐out, in output traces. For a fixed air‐compressor capacity, a trade‐off in array design exists between maximizing source strength and the fine tuning required to maximize the first‐pulse‐to‐bubble ratio. Except for shallow, high‐resolution surveys where the deconvolution step can be bypassed, optimum suppression of total noise in the output can often be obtained using the available air capacity to increase the source strength of a moderately tuned array, rather than to achieve fine tuning of the array. Processing noise produced by deconvolution will prevent detection of a weak reflection closely following a strong one if the ratio of the two is more than about 21 dB, no matter how finely tuned the source array may be.

This publication has 0 references indexed in Scilit: