Pathways of parasympathetic and sensory cerebrovascular nerves in monkeys.

Abstract
Using immunohistochemistry, we studied the origins and pathways of parasympathetic and sensory nerve fibers to the pial arteries in four squirrel monkeys. Following its application to the surface of the middle cerebral artery, the retrograde axonal tracer True Blue accumulated in parasympathetic neurons of the sphenopalatine ganglion and the internal carotid ganglion. The latter is strategically located where the internal carotid artery enters the cranium. Fibers from the sphenopalatine ganglion reach the internal carotid artery in the cavernous sinus region after running as rami orbitales. Before reaching the internal carotid artery, the fibers bypass aberrant sphenopalatine ganglia, with the most distant, the cavernous ganglion, being located in the cavernous sinus region. True Blue also accumulated in sensory neurons of the ophthalmic and maxillary divisions of the trigeminal ganglion and in sensory neurons of the internal carotid ganglion. Fibers from the ophthalmic division of the trigeminal ganglion reach the internal carotid artery as a branch through the cavernous sinus, bypassing the cavernous ganglion. Fibers from the maxillary division also bypass the cavernous ganglion after reaching it via a recurrent branch of the orbitociliary nerve. Thus, the cavernous ganglion forms a confluence zone for parasympathetic and sensory fibers in the region. In addition, parasympathetic and sensory fibers leave the confluence zone to follow the abducent and trochlear nerves backward to the basilar artery and tentorium cerebelli, respectively. Clinical implications are discussed.