Abstract
Computer simulations of radiation processes in an air bubble and an argon bubble are performed under a condition of single-bubble sonoluminescence (SBSL) based on a quasiadiabatic compression model of a bubble collapse. It is clarified that emissions from excited molecules are strongly quenched by high pressure and temperature inside a SBSL bubble and SBSL originates in the emissions from plasma. It is pointed out that sonoluminescence from cavitation fields (MBSL) originates in emissions from excited molecules, which is not quenched due to the much lower pressure and temperature inside the MBSL bubbles.

This publication has 28 references indexed in Scilit: