Role of metaldstates in II-VI semiconductors

Abstract
All-electron band-structure calculations and photoemission experiments on II-VI semiconductors both exhibit a metal d subband inside the main valence band. It has nevertheless been customary in pseudopotential and tight-binding approaches to neglect the metal d band by choosing Hamiltonian parameters which place this band inside the chemically inert atomic cores. Using all-electron self-consistent electronic-structure techniques (which treat the outermost d electrons on the same footing as other valence electrons) and comparing the results to those obtained by methods which remove the d band from the valence spectrum, we study their effects on valence properties. For II-VI semiconductors we find that p-d repulsion and hybridization (i) lower the band gaps, (ii) reduce the cohesive energy, (iii) increase the equilibrium lattice parameters, (iv) reduce the spin-orbit splitting, (v) alter the sign of the crystal-field splitting, (vi) increase the valence-band offset between common-anion II-VI semiconductors, and (vii) modify the charge distributions of various II-VI systems and their alloys. p-d repulsion is also shown to be responsible for the occurrence of deep Cu acceptor levels in II-VI semiconductors (compared with shallow acceptors of Zn in III-V), for the anomalously small band gaps in chalcopyrites, and for the negative exchange splitting in ferromagnetic MnTe.