Influence of Coenzyme on the Refolding and Reassociation in vitro of Glyceraldehyde-3-phosphate Dehydrogenase from Yeast

Abstract
Kinetic analysis of the reactivation in vitro of glyceraldehyde-3-phosphate dehydrogenase from yeast in the presence of NAD+ suggested that transconformation reactions of inactive monomers and their subsequent association to native tetramers are responsible for the sigmoidal relaxations [R. Rudolph et al. (1977) Eur. J. Biochem. 81, 563–570]. Comparison with the reactivation behaviour in the absence of coenzyme was not feasible at this stage due to the instability of the apo-enzyme. In the present study, solvent conditions were established which allowed both apoenzyme and holoenzyme to exhibit high stability. The apoenzyme is stable in phosphate buffer; but if excess NAD+ and phosphate are present (both of which stabilize the enzyme if applied separately), destabilization occurs. Protection of functional groups against oxidation by addition of a reducing agent and by degassing and preventing contact with air, increase the stability. Only partial stabilization can be achieved in the presence of NADH. Comparing the kinetics of reactivation in the presence and absence of coenzymes shows that both oxidized and reduced coenzyme enhance the rate of reactivation significantly, and to the same extent. The kinetic effect of coenzyme binding to the refolding polypeptide chain is discussed in terms of the stabilization of intermediates or end products of reconstitution on the one hand, and acceleration of folding and association reactions, on the other.

This publication has 21 references indexed in Scilit: