Dielectric-loaded wideband gyro-TWT

Abstract
[[abstract]]The bandwidth of a gyro-TWT (traveling-wave tube) can be widened by employing a dielectric-loaded waveguide to reduce the circuit's dispersion. Fast wave interaction allows the requirements on the beam's quality to be relaxed compared with slow wave interaction. A low-α (≡ν⊥/νz) electron beam is chosen to avoid the absolute instability and minimize the possibility of dielectric charging. This device is investigated using a self-consistent single-mode, large-signal simulation based on a slow time scale formulation. Simulation results show that a constant drive bandwidth of 20% can be achieved for a 100 kV, 5 A electron beam with a velocity ratio of α=0.59 and an axial velocity spread of 2.0%. The growth rate is relatively low because of the low α of the electron beam. The design of a proof-of-principle experiment is described. The tube is expected to deliver a power of 80 kW from 9 to 11 GHz with 15% efficiency and a saturated gain of 30 dB. The performance of a single-anode magnetron injection gun designed to produce the required high-quality electron beam has been studied through simulation[[fileno]]2060105010037[[department]]工程與系統科學

This publication has 22 references indexed in Scilit: