Abstract
Nodularia is a halotolerant, filamentous, dinitrogen-fixing cyanobacterium that forms massive blooms in some coastal oceans, estuaries, and saline lakes worldwide. Although the genus is globally distributed, its blooms are sporadic and appear to be confined to certain water bodies. Blooms are frequently associated with phosphorus enrichment; therefore Nodularia may benefit from increased anthropogenic nutrient loading to coastal waters. We studied the potential for Nodularia to grow in the nitrogen-limited Neuse River Estuary (North Carolina, U.S.A.) with laboratory growth experiments in Neuse River Estuary water and by examining physico-chemical data from the estuary. Analysis of nutrients (nitrogen and phosphorus), salinity, and temperature data from the Neuse River Estuary between 1994 and 1998 revealed that suitable conditions for Nodularia prevailed during the summer of each of these years for time spans ranging from 1.5 to 5 months. Growth of two laboratory strains in Neuse River Estuary water was as fast or slightly slower than in artificial growth medium, as long as the culture inoculum had phosphorus reserves. Phosphorus addition did not stimulate growth of already phosphorus-sufficient inocula. Phosphorus starvation of the inoculum before the experiment decreased growth rates in the estuarine water unless additional phosphorus was supplied. Although phosphorus addition had a stimulatory effect on dinitrogen fixation and productivity, the effect differed for the two Nodularia strains. Results suggest that growth of Nodularia in North Carolinian estuaries is possible, and that such growth would be phosphorus-limited at times. Phosphorus availability may determine the times and locations for potential establishment of Nodularia in this and similar estuarine ecosystems.