Photoelectric Light-Scattering Photometer for Determining High Molecular Weights*
- 1 November 1950
- journal article
- Published by Optica Publishing Group in Journal of the Optical Society of America
- Vol. 40 (11) , 768-778
- https://doi.org/10.1364/josa.40.000768
Abstract
A photoelectric photometer designed for the measurement of absolute turbidity, dissymmetry, and depolarization of dilute solutions of high molecular weight materials, and hence determination of their molecular weights, is described. The photometer comprises essentially a monochromatic parallel primary beam of radiation, a six-sided scattering cell for measurements at 0°, 45°, 90°, and 135°, a multiplier phototube and galvanometer, a standard opal glass diffusor, and removable polarizer and analyzer. Turbidity is determined in terms of a ratio of deflections for the 90° scattering and for the primary beam reduced in intensity by neutral filters and diffused by an opal glass plate. Working relationships leading to determination of absolute turbidity are developed. These relationships include corrections for refraction and reflection effects, and for imperfect diffusion by the opal glass. The latter is evaluated by comparison of the opal glass with reflecting diffusors corrected for specular component of reflectance. The response of some multiplier photo-tubes is shown to be dependent on the plane of polarization of the incident radiation. Data illustrating the performance of the photometer include comparison of molecular weights of polystyrene fractions, beta-lactoglobulin, bovine serum albumin, lysozyme, sucrose octaacetate, Raleigh’s ratio and depolarization for benzene, turbidity of a “standard” polystyrene, and particle size of a GR-S latex, with data obtained by other methods or other investigators.Keywords
This publication has 16 references indexed in Scilit:
- LIGHT-SCATTERING APPARATUS AND TECHNIQUES FOR MEASURING MOLECULAR WEIGHTS OF HIGH POLYMERSCanadian Journal of Research, 1949
- The Investigation of the Properties of Nitrocellulose Molecules in Solution by Light-Scattering Methods. I. Experimental Procedures.The Journal of Physical Chemistry, 1949
- Apparatus and Methods for Measurement and Interpretation of the Angular Variation of Light Scattering; Preliminary Results on Polystyrene SolutionsThe Journal of Chemical Physics, 1948
- Turbidimetric Determination of the Molecular Weight of Micelles of Dihexyl Sodium Sulfosuccinate in WaterThe Journal of Chemical Physics, 1948
- Molecular-weight Determination by Light Scattering.The Journal of Physical Chemistry, 1947
- A Photoelectric Instrument for Light Scattering Measurements and a Differential RefractometerJournal of Applied Physics, 1946
- A Light Scattering Investigation of Cellulose Acetate1Journal of the American Chemical Society, 1946
- Light Scattering in SolutionsJournal of Applied Physics, 1944
- Characteristics of Some New Mercury Arc LampsJournal of the Optical Society of America, 1937
- The scattering of light in protein solutionsTransactions of the Faraday Society, 1935