Abstract
Presents a systematic approach to the development of message passing programs. Our programming model is SPMD, with communications restricted to collective operations: scan, reduction, gather, etc. The design process in such an architecture-independent language is based on correctness-preserving transformation rules that are provable in a formal functional framework. We develop a set of design rules for composition and decomposition. For example, scan followed by reduction is replaced by a single reduction, and global reduction is decomposed into two faster operations. The impact of the design rules on the target performance is estimated analytically and tested in machine experiments. As a case study, we design two provably correct, efficient programs using the Message Passing Interface (MPI) for the famous maximum segment sum problem, starting from an intuitive, but inefficient, algorithm specification.

This publication has 21 references indexed in Scilit: