Evaluation of Special Sensor Microwave/Imager Satellite Data for Regional Soil Moisture Estimation over the Red River Basin
- 1 October 1997
- journal article
- Published by American Meteorological Society in Journal of Applied Meteorology and Climatology
- Vol. 36 (10) , 1309-1328
- https://doi.org/10.1175/1520-0450(1997)036<1309:eossmi>2.0.co;2
Abstract
Regional-scale estimation of soil moisture using in situ field observations is not possible due to problems with the representativeness of the sampling and costs. Remotely sensed satellite data are helpful in this regard. Here, the simulations of 19- and 37-GHz vertical and horizontal polarization brightness temperatures and estimation of soil moistures using data from the Special Sensor Microwave/Imager (SSM/I) for 798 0.25° × 0.25° boxes in the southwestern plains region of the United States for the time period between 1 August 1987 and 31 July 1988 are presented. A coupled land-canopy–atmosphere model is used for simulating the brightness temperatures. The land-surface hydrology is modeled using a thin-layer hydrologic model. The canopy scattering is modeled using a radiative transfer model, and the atmospheric attenuation is characterized using an empirical model. The simulated brightness temperatures are compared with those observed by the SSM/I sensor aboard the Defense Metereological Satel... Abstract Regional-scale estimation of soil moisture using in situ field observations is not possible due to problems with the representativeness of the sampling and costs. Remotely sensed satellite data are helpful in this regard. Here, the simulations of 19- and 37-GHz vertical and horizontal polarization brightness temperatures and estimation of soil moistures using data from the Special Sensor Microwave/Imager (SSM/I) for 798 0.25° × 0.25° boxes in the southwestern plains region of the United States for the time period between 1 August 1987 and 31 July 1988 are presented. A coupled land-canopy–atmosphere model is used for simulating the brightness temperatures. The land-surface hydrology is modeled using a thin-layer hydrologic model. The canopy scattering is modeled using a radiative transfer model, and the atmospheric attenuation is characterized using an empirical model. The simulated brightness temperatures are compared with those observed by the SSM/I sensor aboard the Defense Metereological Satel...Keywords
This publication has 0 references indexed in Scilit: