Restricted ability of human mast cell tryptase to activate proteinase-activated receptor-2 in rat aorta

Abstract
We investigated the potential of human mast cell tryptase to induce relaxation of rat aorta. Trypsin and the selective PAR2-activating peptide (PAR2-AP) SLIGRL-NH2stimulated robust relaxation of phenylephrine-precontracted rat aortic rings. However, human lung tryptase (1–100 nM) either in the presence or absence of heparin failed to induce any significant relaxation. Notwithstanding, incubation of the aorta with tryptase (100 nM), following the addition of a peptide corresponding to the cleavage/activation sequence of rat PAR2(rPAR2), resulted in relaxation of precontracted tissue due to the proteolytic release of the PAR2-AP SLIGRL/ from the parent peptide. Thus, tryptase was enzymatically active in the bioassay system. Preincubation of aorta with neuraminidase to remove cell-surface sialic acid unmasked the ability of tryptase to induce relaxation of the aorta, but had no effect on relaxation induced by trypsin, SLIGRL-NH2, or acetylcholine (Ach). Like trypsin and SLIGRL-NH2, the tryptase-induced relaxation was inhibited by either removal of the endothelium or pretreatment of the tissue with NG-nitro-L-arginine methyl ester (L-NAME), suggesting an endothelium-derived nitric oxide mechanism. Interestingly, tryptase in the presence of heparin failed to induce relaxation of precontracted neuraminidase-treated rat aorta. We conclude that tryptase-induced relaxation of rat aorta, most likely via PAR2, is tightly regulated by heparin and cell-surface sialic acid.Key words: tryptase, PAR2, cardiovascular system, protease.