Calcium gradients during excitation‐contraction coupling in cat atrial myocytes.
- 1 August 1996
- journal article
- Published by Wiley in The Journal of Physiology
- Vol. 494 (3) , 641-651
- https://doi.org/10.1113/jphysiol.1996.sp021521
Abstract
1. Confocal microscopy in combination with the calcium-sensitive fluorescent probe fluo-3 was used to study spatial aspects of intracellular Ca2+ signals during excitation-contraction coupling in isolated atrial myocytes from cat heart. 2. Imaging of [Ca2+]i transients evoked by electrical stimulation revealed that Ca2+ release started at the periphery and subsequently spread towards the centre of the myocyte. 3. Blocking sarcoplasmic reticulum (SR) Ca2+ release with 50 microM ryanodine unmasked spatial inhomogeneities in the [Ca2+]i was higher in the periphery than in central regions of the myocyte. 4. Positive (or negative) staircase or postrest potentiation of the 'whole-cell' [Ca2+] transients were paralleled by characteristic changes in the spatial profile of the [Ca2+]i signal. With low SR Ca2+ load [Ca2+]i transients in the subsarcolemmal space were small and no Ca2+ release in the centre of the cell was observed. Loading of the SR increased subsarcolemmal [Ca2+]i transient amplitude and subsequently triggered further release in more central regions of the cell. 5. Spontaneous Ca2+ release from functional SR units, i.e. Ca2+ sparks, occurred at higher frequency in the subsarcolemmal space than in more central regions of the myocyte. 6. Visualization of the surface membrane using the membrane-selective dye Di-8-ANEPPS demonstrated that transverse tubules (t-tubules) were absent in atrial cells. 7. It is concluded that in atrial myocytes voltage-dependent Ca2+ entry triggers Ca2+ release from peripheral coupling SR that subsequently induces further Ca2+ release from stores in more central regions of the myocyte. Spreading of Ca2+ release from the cell periphery to the centre accounts for [Ca2+]i gradients underlying the whole-cell [Ca2+]i transient. The finding that cat atrial myocytes lack t-tubules demonstrates the functional importance of Ca2+ release from extended junctional (corbular) SR in these cells.Keywords
This publication has 25 references indexed in Scilit:
- Local calcium transients triggered by single L-type calcium channel currents in cardiac cellsScience, 1995
- Immunolocalization of sarcolemmal dihydropyridine receptor and sarcoplasmic reticular triadin and ryanodine receptor in rabbit ventricle and atrium.The Journal of cell biology, 1995
- Calcium Sparks: Elementary Events Underlying Excitation-Contraction Coupling in Heart MuscleScience, 1993
- Excitation-contraction coupling in mammalian cardiac cellsCardiovascular Research, 1992
- Simultaneous recording of Indo‐1 flourescence and Na+/Ca2+ exchange current reveals two components of Ca2+‐release from sarcoplasmic reticulum of cardiac atrial myocytesFEBS Letters, 1990
- Subcellular Calcium Transients Visualized by Confocal Microscopy in a Voltage-Clamped Vertebrate NeuronScience, 1990
- Cellular mechanism of the relationship between myocardial force and frequency of contractionsProgress in Biophysics and Molecular Biology, 1987
- Identification of Na-Ca exchange current in single cardiac myocytesNature, 1986
- Corbular sarcoplasmic reticulum of rabbit cardiac muscleJournal of Ultrastructure Research, 1984
- THE ULTRASTRUCTURE OF THE CAT MYOCARDIUMThe Journal of cell biology, 1969