Algebras of distributions suitable for phase-space quantum mechanics. I

Abstract
The twisted product of functions on R2N is extended to a *‐algebra of tempered distributions that contains the rapidly decreasing smooth functions, the distributions of compact support, and all polynomials, and moreover is invariant under the Fourier transformation. The regularity properties of the twisted product are investigated. A matrix presentation of the twisted product is given, with respect to an appropriate orthonormal basis, which is used to construct a family of Banach algebras under this product.

This publication has 19 references indexed in Scilit: