Quantum copying: Fundamental inequalities

Abstract
How well can one copy an arbitrary qubit? To answer this question we consider two arbitrary vectors in a two-dimensional state space and an abstract copying transformation which will copy these two vectors. If the vectors are orthogonal, then perfect copies can be made. If they are not, then errors will be introduced. The size of the error depends on the inner product of the two original vectors. We derive a lower bound for the amount of noise induced by quantum copying. We examine both copying transformations which produce one copy and transformations which produce many, and show that the quality of each copy decreases as the number of copies increases.
All Related Versions