Manipulation of host behaviour by parasites: ecosystem engineering in the intertidal zone?

Abstract
Understanding the influence of parasites on the community ecology of free–living organisms is an emerging theme in ecology. The cockle Austrovenus stutchburyi is an abundant mollusc inhabiting the sheltered shores of New Zealand. This species, which lives just few centimetres under the surface, plays a key role for many benthic invertebrate species, because in these habitats the cockle shell is the only available hard surface where invertebrates can establish. However, the behaviour of this cockle can be altered locally by a parasite, the trematode Curtuteria australis. Indeed, heavily infected cockles are unable to bury perfectly and typically lie entirely exposed at the surface of the mud. In this study, we investigated the ecological consequences of this behavioural alteration for two invertebrates species commonly associated with cockles, the anemone Anthopleura aureoradiata and the limpet Notoacmea helmsi. A field study first demonstrated that in both infected and non–infected populations of cockles, there was a negative relationship between the number of anemones and limpets found on cockles. In the laboratory, we showed that predation of limpets by anemones is possible when they share the same cockle shell. In a heavily infected population of cockles, limpets were significantly more frequent and more abundant on cockles manipulated by C. australis than on cockles with a normal behaviour. A colonization test conducted in natural conditions demonstrated that the predominance of limpets on manipulated cockles results from a direct habitat preference. Conversely, anemones were significantly less frequent and less abundant on manipulated cockles than on cockles manipulated by C. australis. A desiccation test revealed that, relative to limpets, they had a lower resistance to this physical stress. We discuss our results in relation to current ideas on ecosystem engineering by organisms.