Killing of microorganisms by pulsed electric fields
- 1 March 1996
- journal article
- research article
- Published by Springer Nature in Applied Microbiology and Biotechnology
- Vol. 45 (1-2) , 148-157
- https://doi.org/10.1007/s002530050663
Abstract
Lethal effects of pulsed electric fields (PEF) on suspensions of various bacteria, yeast, and spores in buffer solutions and liquid foodstuffs were examined. Living-cell counts of vegetative cell types were reduced by PEF treatment by up to more than four orders of magnitude (> 99.99%). On the other hand, endoand ascospores were not inactivated or killed to any great extent. The killing of vegetative cell types depends on the electrical field strength of the pulses and on the treatment time (the product of the pulse number and the decay time constant of the pulses). For each cell type, a specific critical electric field strength (E c) and a specific critical treatment time (t c) were determined. Above these critical values, the fractions of surviving cells were reduced drastically. The “limits” E c and t c depend on the cell characteristics as well as on the type of medium in which the cells are suspended. Especially in acid media living-cell counts were sufficiently decreased at very low energy inputs. In addition to the inactivation of microorganisms, the effect of PEF on food components such as whey proteins, enzymes and vitamins, and on the taste of foodstuffs was studied. The degree of destruction of these food components by PEF was very low or negligible. Moreover, no significant deterioration of the taste of foodstuffs was detected after PEF treatment. Disintegration of cells by PEF treatment in order to harvest intracellular products was also studied. Yeast cells, suspended in buffer solution, were not disintegrated by electric pulses. Hence, PEF treatment is an excellent process for inactivation of microorganisms in acid and in thermosensive media, but not for complete disintegration of microbial cells.Keywords
This publication has 21 references indexed in Scilit:
- Kinetics of sterilization ofLactobacillus breviscells by the application of high voltage pulsesBiotechnology & Bioengineering, 1992
- Haltbarmachen von LebensmittelnPublished by Springer Nature ,1990
- Electrical breakdown, electropermeabilization and electrofusionPublished by Springer Nature ,1985
- Electric field effects on bacteria and yeast cellsRadiation and Environmental Biophysics, 1983
- Biochemische ArbeitsmethodenPublished by Walter de Gruyter GmbH ,1981
- Killing of bacteria with electric pulses of high field strengthRadiation and Environmental Biophysics, 1981
- Cultural and nutritional studies of zoopathogenic fungi associated with livestock feeds in NigeriaJournal of Basic Microbiology, 1981
- Lethal effects of high-voltage pulses on E. coli K12Radiation and Environmental Biophysics, 1980
- Dependence of the electrical breakdown voltage on the charging time inValonia utricularisThe Journal of Membrane Biology, 1980
- Effects of high electric fields on micro-organismsBiochimica et Biophysica Acta (BBA) - Biomembranes, 1968