The Feasibility of Estimating Ocean Surface Currents on an Operational Basis Using Satellite Feature Tracking Methods

Abstract
The feasibility of using a relatively new technique, often referred to as satellite feature tracking, for estimating ocean surface currents is described. Sequential satellite imagery is used to determine the displacements of selected ocean features over the time intervals between successive images. Both thermal infrared (IR) imagery from the Advanced Very High Resolution Radiometer (AVHRR) and ocean color imagery have been used to conduct feature tracking. Both subjective and objective techniques related to feature tracking exist to estimate surface flow fields. Because of the requirement for accurate earth location and coregistration of the imagery used in feature tracking, the technique has been primarily restricted to coastal regions where landmarks are available to renavigate the satellite data. The technique is identical in concept to the approach that has been used in meteorology for the past 25 years to estimate low-level winds from geostationary satellite data. Initially, a description of the feat... The feasibility of using a relatively new technique, often referred to as satellite feature tracking, for estimating ocean surface currents is described. Sequential satellite imagery is used to determine the displacements of selected ocean features over the time intervals between successive images. Both thermal infrared (IR) imagery from the Advanced Very High Resolution Radiometer (AVHRR) and ocean color imagery have been used to conduct feature tracking. Both subjective and objective techniques related to feature tracking exist to estimate surface flow fields. Because of the requirement for accurate earth location and coregistration of the imagery used in feature tracking, the technique has been primarily restricted to coastal regions where landmarks are available to renavigate the satellite data. The technique is identical in concept to the approach that has been used in meteorology for the past 25 years to estimate low-level winds from geostationary satellite data. Initially, a description of the feat...