Abstract
We develop theory for the lateral interactions among the zwitterionic head groups of phospholipids in monolayers and bilayers, particularly phosphatidylcholine (PC) and phosphatidylethanolamine (PE). With the P- end of the head group anchored at the water/hydrocarbon interface, a balance of two effects dictates the angle that the P--N+ dipole makes with respect to the plane of the bilayer: N+ is driven toward water due to the (Born) electrostatic free energy, but the hydrophobic effect drives the methyl and methylene groups around the N+ charge toward the hydrocarbon. The only adjustable parameter of the model is the average fluctuation of the oil/water interface or, alternatively, the dielectric constant of the hydrocarbon phase. The model predicts that at 5%C the head group dipole should lie largely in the bilayer plane, in accord with X-ray, neutron diffraction, and NMR studies. The theory makes the novel prediction that the N+ end of the dipole becomes increasingly submerged in hydrocarbon with increasing temperature, leading to strongly enhanced lateral repulsion between PC head groups. This prediction is in good agreement with second and third virial coefficients of monolayer lateral pressures, and with the temperature dependence of the former. The theoretical model is consistent with head group fluctuations measured by neutron diffraction of PC and PE bilayers. Because PE has a smaller hydrophobic cluster near N+, its lateral repulsion should be much smaller and less temperature dependent than for PC, also in agreement with equation-of-state measurements. This suggests why at high density PE monolayers have higher melting temperatures than PC monolayers and more propensity for reversed curvature.

This publication has 14 references indexed in Scilit: