Abstract
In situ gravimetric measurements and microscopic examinations were used to determine the mechanisms of oxygen removal from synthetic ilmenite disks between 823 and 1353 K. Under a hydrogen atmosphere, iron was observed to form a layer of low porosity on the surface of samples early in the reduction. This created diffusion limitations for hydrogen to the reaction front and for the escape of water vapor. A shrinking core reduction model, modified to include the growth of this iron film, was capable of predicting the conversion-time relationships of ilmenite samples. An activation energy of 43.2 ± 2.6 kcal/gmole was determined to be representative of reaction control over the temperature range 823–1023 K.

This publication has 12 references indexed in Scilit: