Balanced cross sections

Abstract
Post-depositional concentric deformation produces no significant change in rock volume. Since bed thickness remains constant in concentric deformation, the surface area of a bed and its length in a cross-sectional plane must also remain constant. Under these conditions, a simple test of the geometric validity of a cross section is to measure bed lengths at several horizons between reference lines located on the axial planes of major synclines or other areas of no interbed slip. These bed lengths must be consistent unless a discontinuity, like a décollement, intervenes. Consistency of bed length also requires consistency of shortening, whether by folding and (or) faulting, within one cross section and between adjacent cross sections.The number of possible cross-sectional explanations of a set of data is reduced by the fact that, in a specific geological environment, there is only a limited suite of structures which can exist. This imposes a set of local "ground rules" on interpretation. When these local restrictions are coupled with the geometric restrictions which follow from the law of conservation of volume, it is often possible to produce structural cross sections that have a better-than-normal chance of being right.The concept of consistency of shortening can be extrapolated to a mountain belt as a whole, thereby indicating the necessity for some kind of transfer mechanism wherein waning faults or folds are compensated by waxing en echelon features. These concepts are illustrated diagrammatically and by examples from the Alberta Foothills.