Calpain Mediates Eukaryotic Initiation Factor 4G Degradation during Global Brain Ischemia

Abstract
Global brain ischemia and reperfusion result in the degradation of the eukaryotic initiation factor (eIF) 4G, which plays a critical role in the attachment of the mRNA to the ribosome. Because eIF-4G is a substrate of calpain, these studies were undertaken to examine whether calpain I activation during global brain ischemia contributes to the degradation of eIF-4G in vivo. Immunoblots with antibodies against calpain I and eIF-4G were prepared from rat brain postmitochondrial supernatant incubated at 37°C with and without the addition of calcium and the calpain inhibitors calpastatin or MDL-28,170. Addition of calcium alone resulted in calpain I activation (as measured by autolysis of the 80-kDa subunit) and degradation of eIF-4G; this effect was blocked by either 1 μmol/L calpastatin or 10 μmol/L MDL-28,170. In rabbits subjected to 20 minutes of cardiac arrest, immunoblots of brain postmitochondrial supernatants showed that the percentage of autolyzed calpain I increased from 1.9% ± 1.1% to 15.8% ± 5.0% and that this was accompanied by a 68% loss of eIF-4G. MDL-28,170 pretreatment (30 mg/kg) decreased ischemia-induced calpain I autolysis 40% and almost completely blocked eIF-4G degradation. We conclude that calpain I degrades eIF-4G during global brain ischemia.